

Secure Code Review of Amulet

Protocol

MTR Labs Pte Ltd.

July 2023

Version 1.0

Presented by:

FYEO Inc.
PO Box 147044

Lakewood CO 80214

United States

Security Level

Public

TABLE OF CONTENTS
Executive Summary .. 2

Overview ... 2

Key Findings .. 2

Scope and Rules of Engagement ... 3

Technical Analyses and Findings .. 5

Findings .. 6

Technical Analysis .. 7

Authorization ... 7

No insufficient authorization was found based on the analysis of the relationship graphs. For details, see
section Relationship Graphs ... 7

Conclusion ... 8

Technical Findings .. 9

General Observations .. 9

The mint of the treasury and pool accounts are not verified when used from an admin function. 10

Unchecked LP Mints Supply in CreateVaultMetadataState when used from an admin function. 12

Unchecked Oracle Account in CreateVaultMetadataState when used from an admin function 14

Admin can deny withdrawal of funds by pausing vaults ... 15

Hardcoded Program Initializer Authority .. 16

LP mints can be the same account ... 17

Lack of Input Validation in CreateVault .. 18

New admin is not co-signer in UpdateAdmin ... 19

The authority on the LP mint accounts is not checked ... 20

The vault pool and treasury token accounts do not check the delegate .. 21

Unchecked token account balance for vault pool .. 22

Duplicate code execution in AttemptToTrigger ... 23

In the CreateVault instruction the vault admin should co-sign ... 24

Math inconsistency .. 25

There is no way to clean up old accounts ... 26

Unnecessary constraints.. 27

Withdraw functions do not check token amount against withdraw amount .. 29

Relationship Graphs ... 30

CreateVaultMetadataState .. 32

AdminUpdateAdminAuthInfo ... 33

AdminUpdatePauseInfo ... 33

DepositRiskFund ... 34

DepositHedgeFund... 35

AttemptToTrigger .. 36

SettleVault.. 37

WithdrawRiskFund .. 38

WithdrawHedgeFund.. 39

Our Process .. 40

Methodology ... 40

Kickoff.. 40

Ramp-up ... 40

Review ... 40

Code Safety .. 41

Technical Specification Matching... 41

Reporting ... 41

Verify .. 42

Additional Note .. 42

The Classification of vulnerabilities .. 42

LIST OF FIGURES
Figure 1: Findings by Severity.. 5

Figure 2: CreateVaultMetadataState graph .. 32

Figure 3: AdminUpdateAdminAuthInfo graph .. 33

Figure 4: AdminUpdatePauseInfo graph ... 33

Figure 5: DepositRiskFund graph ... 34

Figure 6: DepositRiskFund graph ... 35

Figure 7: AttemptToTrigger graph ... 36

Figure 8: SettleVault graph .. 37

Figure 9: WithdrawRiskFund graph .. 38

Figure 10: WithdrawHedgeFund graph ... 39

Figure 11: Methodology Flow .. 40

LIST OF TABLES

Table 1: Scope ... 4

Table 2: Findings Overview ... 6

Table 3: Legend for relationship graphs .. 31

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 2

EXECUTIVE SUMMARY

OVERVIEW

MTR Labs Pte Ltd. engaged FYEO Inc. to perform a Secure Code Review of Amulet Protocol.

The assessment was conducted remotely by the FYEO Security Team. Testing took place on June 12 - June 23,

2023, and focused on the following objectives:

• To provide the customer with an assessment of their overall security posture and any risks that were

discovered within the environment during the engagement.

• To provide a professional opinion on the maturity, adequacy, and efficiency of the security measures

that are in place.

• To identify potential issues and include improvement recommendations based on the results of our

tests.

This report summarizes the engagement, tests performed, and findings. It also contains detailed descriptions

of the discovered vulnerabilities, steps the FYEO Security Team took to identify and validate each issue, as well

as any applicable recommendations for remediation.

KEY FINDINGS

The following issues have been identified during the testing period. These should be prioritized for

remediation to reduce the risk they pose:

• FYEO-AMULET-ID-01 – The mint of the treasury and pool accounts are not verified when used from

an admin function.

• FYEO-AMULET-ID-02 – Unchecked LP Mints Supply in CreateVaultMetadataState when used from an

admin function.

• FYEO-AMULET-ID-03 – Unchecked Oracle Account in CreateVaultMetadataState when used from an

admin function

• FYEO-AMULET-ID-04 – Admin can deny withdrawal of funds by pausing vaults

• FYEO-AMULET-ID-05 – Hardcoded Program Initializer Authority

• FYEO-AMULET-ID-06 – LP mints can be the same account

• FYEO-AMULET-ID-07 – Lack of Input Validation in CreateVault

• FYEO-AMULET-ID-08 – New admin is not co-signer in UpdateAdmin

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 3

• FYEO-AMULET-ID-09 – The authority on the LP mint accounts is not checked

• FYEO-AMULET-ID-10 – The vault pool and treasury token accounts do not check the delegate

• FYEO-AMULET-ID-11 – Unchecked token account balance for vault pool

• FYEO-AMULET-ID-12 – Duplicate code execution in AttemptToTrigger

• FYEO-AMULET-ID-13 – In the CreateVault instruction the vault admin should co-sign

• FYEO-AMULET-ID-14 – Math inconsistency

• FYEO-AMULET-ID-15 – There is no way to clean up old accounts

• FYEO-AMULET-ID-16 – Unnecessary constraints

• FYEO-AMULET-ID-17 – Withdraw functions do not check token amount against withdraw amount

Based on account relationship graph analysis and our review process, we conclude that the reviewed code

implements the documented functionality.

The re-review has verified that the findings above Informational have all been remediated.

SCOPE AND RULES OF ENGAGEMENT

The FYEO Review Team performed a Secure Code Review of Amulet Protocol. The following table documents

the targets in scope for the engagement. No additional systems or resources were in scope for this assessment.

The source code was supplied through a private repository at https://github.com/Amulet-Protocol/vault-

programs with the commit hash e182a0ecf4e2f70d701f21a153a76eb84c26bc29.

The re-review was done on the commit hash 59884f527a94e461438e49bd8fe305a50fc6f752

Files included in the code review

amulet/

├── programs/

│ └── vault/

│ ├── src/

│ │ ├── admins/

│ │ │ ├── admin_update_admin_auth_info.rs

│ │ │ ├── admin_update_pause_info.rs

│ │ │ └── mod.rs

│ │ ├── instructions/

│ │ │ ├── attempt_to_trigger.rs

│ │ │ ├── create_vault_metadata_state.rs

│ │ │ ├── deposit_hedge_fund.rs

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 4

Files included in the code review

│ │ │ ├── deposit_risk_fund.rs

│ │ │ ├── mod.rs

│ │ │ ├── settle_vault.rs

│ │ │ ├── withdraw_hedge_fund.rs

│ │ │ └── withdraw_risk_fund.rs

│ │ ├── states/

│ │ │ ├── metadata_state.rs

│ │ │ └── mod.rs

│ │ ├── utils/

│ │ │ ├── calc.rs

│ │ │ └── mod.rs

│ │ ├── error.rs

│ │ └── lib.rs

│ ├── Cargo.toml

│ └── Xargo.toml

└── Cargo.toml

Table 1: Scope

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 5

TECHNICAL ANALYSES AND FINDINGS

During the Secure Code Review of Amulet Protocol, we discovered:

• 3 findings with HIGH severity rating.

• 1 finding with MEDIUM severity rating.

• 7 findings with LOW severity rating.

• 6 findings with INFORMATIONAL severity rating.

The following chart displays the findings by severity.

Figure 1: Findings by Severity

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 6

FINDINGS

The Findings section provides detailed information on each of the findings, including methods of discovery,

explanation of severity determination, recommendations, and applicable references.

The following table provides an overview of the findings.

Finding # Severity Description

FYEO-AMULET-ID-01 High
The mint of the treasury and pool accounts are not verified when

used from an admin function.

FYEO-AMULET-ID-02 High
Unchecked LP Mints Supply in CreateVaultMetadataState when

used from an admin function.

FYEO-AMULET-ID-03 High
Unchecked Oracle Account in CreateVaultMetadataState when

used from an admin function

FYEO-AMULET-ID-04 Medium Admin can deny withdrawal of funds by pausing vaults

FYEO-AMULET-ID-05 Low Hardcoded Program Initializer Authority

FYEO-AMULET-ID-06 Low LP mints can be the same account

FYEO-AMULET-ID-07 Low Lack of Input Validation in CreateVault

FYEO-AMULET-ID-08 Low New admin is not co-signer in UpdateAdmin

FYEO-AMULET-ID-09 Low The authority on the LP mint accounts is not checked

FYEO-AMULET-ID-10 Low
The vault pool and treasury token accounts do not check the

delegate

FYEO-AMULET-ID-11 Low Unchecked token account balance for vault pool

FYEO-AMULET-ID-12 Informational Duplicate code execution in AttemptToTrigger

FYEO-AMULET-ID-13 Informational In the CreateVault instruction the vault admin should co-sign

FYEO-AMULET-ID-14 Informational Math inconsistency

FYEO-AMULET-ID-15 Informational There is no way to clean up old accounts

FYEO-AMULET-ID-16 Informational Unnecessary constraints

FYEO-AMULET-ID-17 Informational
Withdraw functions do not check token amount against withdraw

amount

Table 2: Findings Overview

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 7

TECHNICAL ANALYSIS

The source code has been manually validated to the extent that the state of the repository allowed. The

validation includes confirming that the code correctly implements the intended functionality.

AUTHORIZATION

The review used relationship graphs to show the relations between account input passed to the instructions of

the program. The relations are used to verify if the authorization is sufficient for invoking each instruction. The

graphs show if any unreferenced accounts exist. Accounts that are not referred to by trusted accounts can be

replaced by any account of an attacker's choosing and thus pose a security risk.

In particular, the graphs will show if signing accounts are referred to. If a signing account is not referred to then

any account can be used to sign the transaction causing insufficient authorization.

NO INSUFFICIENT AUTHORIZATION WAS FOUND BASED ON THE ANALYZES OF

THE RELATIONSHIP GRAPHS. FOR DETAILS, SEE SECTION RELATIONSHIP

GRAPHS

A relationship graph shows relational requirements to the input of an instruction. Notice, that it does not show

outcome of the instruction.

Relationship graphs are used to analyze insufficient authorization and unchecked account relations. Insufficient

authorization allows unintended access. Unchecked account relations may allow account and data injection

resulting in unintended behavior and access.

Various styles are used to highlight special properties. Accounts are shown as boxes with round corners. An

account box may contain smaller boxes indicating relevant account data.

The following table shows the basic styles for the relationship graphs.

Round boxes with thick blue borders indicate accounts required to

sign the transaction.

Green round boxes highlight accounts required to be owned by the

program itself.

Red round boxes indicate accounts where ownership is not validated.

Further analysis should be made to ensure this does not allow account

injection attacks.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 8

Orange boxes indicate instruction data. As instruction data does not

originate from the blockchain, it may open for data injection attacks.

Caution must be taken if used for account validation.

Green boxes indicate constants. It may refer to either hardcoded

values or library code.

Inner boxes are used to indicate data structures to ease readability.

Additional colors may also be used to highlight account ownership

from different programs.

Dashed lines indicate implicitly required relations. For example,

relations required by another program during a cross program

invocation. This is emphasized as the program cannot guarantee the

behavior of external programs.

Program derived addresses are calculated using the

find_program_address or create_program_address

functions. To illustrate the relations to the input used for the PDA

calculation, a diamond shaped box is used to show the PDA and a

double-edged box to gather the seeds.

As seed injection may lead to account injection, it is important that all

input to the PDA is verified.

Table 3: Legend for relationship graphs starting on page 30.

CONCLUSION

Based on account relationship graph analysis and our review process, we conclude that the code implements

the documented functionality to the extent of the reviewed code.

The re-review has verified that the findings above Informational have all been remediated.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 9

TECHNICAL FINDINGS

GENERAL OBSERVATIONS

During the code review, it was evident that the Rust code exhibited exceptional quality and structure. One

notable aspect was the implementation of checked arithmetic operations to protect against potential

overflows and underflows, showcasing a strong commitment to writing secure programs. The code

documentation was also commendable, with the inclusion of required doc comments for unchecked accounts,

providing insightful explanations behind key decisions made during development.

The utilization of the Anchor framework in this Solana project proved to be a solid foundation. The built-in

account verification functionality offered by Anchor played a crucial role in ensuring the project’s integrity

and security. The code heavily relied on Anchor’s validation and access restriction macros, further reinforcing

the project’s robustness.

While the code is well-constructed, a few account checks were deemed somewhat verbose during the review.

For instance, token transfers between accounts of different mints are destined to fail, making various token

and mint account checks unnecessary. The project demonstrated good practice by incorporating custom

errors to enhance the user experience, providing informative messages to users in case of transaction failures.

The issue FYEO-AMULET-ID-05 regarding Hardcoded Program Initializer Authority will be solved by using

multisig authority from Squads (serum-multisig) as the PDA for the Program Initializer Authority. This plan

makes us sufficiently assured to mark the issue as remediated.

Overall, the code review yielded positive results, highlighting the exceptional craftsmanship and meticulous

attention to detail evident in this Solana project. The combination of secure coding practices, intelligent

utilization of the Anchor framework, and efforts to improve user experience through custom errors

demonstrate expertise and ability to create great smart contracts for Solana.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 10

THE MINT OF THE TREASURY AND POOL ACCOUNTS ARE NOT VERIFIED WHEN USED FROM

AN ADMIN FUNCTION.

Finding ID: FYEO-AMULET-ID-01

Severity: High

Status: Remediated

Description

The mint of neither the vault_treasury_token_account nor vault_pool_token_account token

accounts are checked.

Proof of Issue

File name: lib.rs

Line number: 157

#[account(

 constraint = *vault_admin_auth.key == vault_treasury_token_account.owner

@ErrorCode::ConstraintInvalidTAOwner,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_treasury_token_account: Account<'info, TokenAccount>,

File name: lib.rs

Line number: 163

#[account(

 constraint = *vault_auth_pda.key == vault_pool_token_account.owner

@ErrorCode::ConstraintInvalidTAOwner,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_pool_token_account: Account<'info, TokenAccount>,

Severity and Impact Summary

Since there is no check of the mint, it is possible that the vault_treasury_token_account account is of a

different mint than vault_pool_token_account and / or vault_token_mint. If so, this vault ends up in a

DoS situation where it is impossible for depositors to withdraw funds as a transfer between token accounts of

different mints can not possibly work. The code below would fail in such a situation, resulting in user funds

becoming stuck.

.withdraw_hedge_fund(

 metadata_state_pubkey,

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 11

 &self.vault_auth_pda,

 &self.vault_pool_token_account.to_account_info(),

 &self.vault_treasury_token_account.to_account_info(),

 fee_amount,

 &self.token_program,

)

If the mint of vault_pool_token_account mismatches, it is less of an issue, as deposits would not work.

Recommendation

Make sure that vault_treasury_token_account and vault_pool_token_account are token accounts of

the mint account vault_token_mint.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 12

UNCHECKED LP MINTS SUPPLY IN CREATEVAULTMETADATASTATE WHEN USED FROM

AN ADMIN FUNCTION.

Finding ID: FYEO-AMULET-ID-02

Severity: High

Status: Remediated

Description

In the CreateVaultMetadataState instruction, there is no check to ensure that the LP mints

vault_risk_pool_lp_mint and vault_hedge_pool_lp_mint have zero supply. This may lead to

unexpected behavior as someone may initialize the vault with LP mints that have already been used.

Proof of Issue

File name: lib.rs

Line number: 169

#[account(

 constraint = vault_risk_pool_lp_mint.freeze_authority.is_none()

@ErrorCode::ConstraintMintFreezeAuthNone,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_risk_pool_lp_mint: Account<'info, Mint>,

#[account(

 constraint = vault_hedge_pool_lp_mint.freeze_authority.is_none()

@ErrorCode::ConstraintMintFreezeAuthNone,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_hedge_pool_lp_mint: Account<'info, Mint>,

Severity and Impact Summary

A malicious or inattentive admin may initialize the vault with LP mints that have already been used, this could

enable somebody already holding these tokens to steal from users of this vault.

Recommendation

Add constraints to check if the LP mints have zero supply. Otherwise, these accounts could be setup as init

and could be constructed as PDAs. This way they would be new accounts initialized by Anchor and would

therefore be empty.

#[account(

 constraint = vault_risk_pool_lp_mint.supply == 0

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 13

@ErrorCode::ConstraintMintZeroSupply,

)]

pub vault_risk_pool_lp_mint: Account<'info, Mint>;

#[account(

 constraint = vault_hedge_pool_lp_mint.supply == 0

@ErrorCode::ConstraintMintZeroSupply,

)]

pub vault_hedge_pool_lp_mint: Account<'info, Mint>;

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 14

UNCHECKED ORACLE ACCOUNT IN CREATEVAULTMETADATASTATE WHEN USED FROM

AN ADMIN FUNCTION

Finding ID: FYEO-AMULET-ID-03

Severity: High

Status: Remediated

Description

The vault_oracle_account is not checked for validity in the CreateVaultMetadataState function. This

means that an inattentive or malicious admin could potentially pass in a malicious or incorrect oracle account

when creating a vault.

Proof of Issue

File name: lib.rs

Line number: 181

/// CHECK: the switchboard oracle feed account

pub vault_oracle_account: AccountInfo<'info>,

File name: instructions/create_vault_metadata_state.rs

Line number: 53

self.vault_metadata_state.vault_oracle_account_key = self.vault_oracle_account.key();

Severity and Impact Summary

If a malicious or incorrect oracle account is used, it could lead to incorrect price data being used in the vault,

which could have severe consequences for the vault’s operation and the funds of its users.

Recommendation

Add checks to ensure that the vault_oracle_account is valid and comes from a trusted source. This may

include checking that the account is owned by switchboard, and that it has the correct data format and

structure. The account should be de-serialized as is done in pub fn get_latest_trigger_status() to

ensure this won’t fail later on where it would lead to a DoS situation.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 15

ADMIN CAN DENY WITHDRAWAL OF FUNDS BY PAUSING VAULTS

Finding ID: FYEO-AMULET-ID-04

Severity: Medium

Status: Remediated

Description

The instructions SettleVault, WithdrawRiskFund and WithdrawHedgeFund can not be run if the admin

pauses the vault by setting vault_is_paused. It appears that the vault is settled with an outcome in

AttemptToTrigger and it would seem unnecessary for a vault to be paused afterwards.

Proof of Issue

File name: lib.rs

Line number: 438, 488, 568

constraint = !vault_metadata_state.vault_is_paused

@ErrorCode::ConstraintStateVaultIsPaused,

Severity and Impact Summary

A malicious admin could pause the vault in order to prevent users from withdrawing funds. The admin can

then blackmail users in an attempt to force them to do as the admin demands.

Recommendation

Consider if the pause functionality is useful at this stage.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 16

HARDCODED PROGRAM INITIALIZER AUTHORITY

Finding ID: FYEO-AMULET-ID-05

Severity: Low

Status: Remediated

Description

The program initializer authority (PIA) is hardcoded in the source code, which makes it difficult to update or

change the PIA in the future.

Proof of Issue

File name: lib.rs

Line number: 16

pub const PROGRAM_INITIALIZER_AUTH: Pubkey = Pubkey::new_from_array([...]);

Severity and Impact Summary

If the hardcoded PIA is compromised, it would be difficult to replace it with a new one, which could result in a

loss of control over the program.

Recommendation

Instead of hardcoding the PIA, consider using a configurable value that can be updated or changed if needed.

This can be done by storing the PIA in an account or using a PDA (Program Derived Address) to manage the

PIA.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 17

LP MINTS CAN BE THE SAME ACCOUNT

Finding ID: FYEO-AMULET-ID-06

Severity: Low

Status: Remediated

Description

The two mint accounts vault_risk_pool_lp_mint and vault_hedge_pool_lp_mint can be the same

account.

Proof of Issue

File name: lib.rs

Line number: 169

#[account(

 constraint = vault_risk_pool_lp_mint.freeze_authority.is_none()

@ErrorCode::ConstraintMintFreezeAuthNone,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_risk_pool_lp_mint: Account<'info, Mint>,

#[account(

 constraint = vault_hedge_pool_lp_mint.freeze_authority.is_none()

@ErrorCode::ConstraintMintFreezeAuthNone,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_hedge_pool_lp_mint: Account<'info, Mint>,

Severity and Impact Summary

In case these accounts are the same, the same token would be issued for both hedge and risk sides. Which

would cause issues with settling and withdrawing.

Recommendation

Make sure that the mint accounts do not have the same key.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 18

LACK OF INPUT VALIDATION IN CREATEVAULT

Finding ID: FYEO-AMULET-ID-07

Severity: Low

Status: Remediated

Description

The instruction CreateVaultMetadataState accepts several parameters, but there is no input validation for

these parameters. This could lead to logical errors and unintended behavior if incorrect values are passed.

Proof of Issue

File name: instructions/create_vault_metadata_state.rs

Line number: 39

self.vault_metadata_state.vault_risk_pool.fee_pctg = risk_pool_fee_pctg;

...

self.vault_metadata_state.vault_hedge_pool.fee_pctg = hedge_pool_fee_pctg;

...

self.vault_metadata_state.vault_funding_stage_time = funding_stage_time;

self.vault_metadata_state.vault_locked_stage_time = locked_stage_time;

self.vault_metadata_state.vault_settlement_stage_time = settlement_stage_time;

self.vault_metadata_state.vault_withdrawal_waiting_time = withdrawal_waiting_time;

Severity and Impact Summary

An inattentive or malicious admin could potentially set times that do not make sense or set extreme fees as

there is no limit on those, this could lead to unintended behavior and potential loss of user funds.

Recommendation

Add input validation and or range checks for all parameters passed to the CreateVaultMetadataState

instruction. Ensure that all parameters are within the expected range and format before processing them.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 19

NEW ADMIN IS NOT CO-SIGNER IN UPDATEADMIN

Finding ID: FYEO-AMULET-ID-08

Severity: Low

Status: Remediated

Description

The AdminUpdateAdminAuthInfo instruction allows the admin to update the admin auth key with limited

checks on the new key. This could lead to a loss of control over the vault if the new key is unable to sign.

Proof of Issue

File name: lib.rs

Line number: 203

#[account(

 owner = system_program::ID @ErrorCode::OwnerSystemProgramID,

 constraint = new_vault_admin_auth.key() != vault_admin_auth.key()

@ErrorCode::ConstraintNonSameAdminKey,

 constraint = new_vault_admin_auth.lamports() >=

sysvar_rent.minimum_balance(new_vault_admin_auth.data_len())

@ErrorCode::ConstraintMinAccountRent,

)]

/// CHECK: pass in admin auth account

pub new_vault_admin_auth: AccountInfo<'info>,

Severity and Impact Summary

The admin could accidentally replace the admin auth key with an invalid key, leading to a loss of control over

the vault.

Recommendation

Make new_vault_admin_auth a Signer that way it is guaranteed that someone has the keys for this account.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 20

THE AUTHORITY ON THE LP MINT ACCOUNTS IS NOT CHECKED

Finding ID: FYEO-AMULET-ID-09

Severity: Low

Status: Remediated

Description

The mint authority of both the vault_risk_pool_lp_mint and vault_hedge_pool_lp_mint are not

checked.

Proof of Issue

File name: lib.rs

Line number: 169

#[account(

 constraint = vault_risk_pool_lp_mint.freeze_authority.is_none()

@ErrorCode::ConstraintMintFreezeAuthNone,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_risk_pool_lp_mint: Account<'info, Mint>,

#[account(

 constraint = vault_hedge_pool_lp_mint.freeze_authority.is_none()

@ErrorCode::ConstraintMintFreezeAuthNone,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_hedge_pool_lp_mint: Account<'info, Mint>,

Severity and Impact Summary

Since the mint authority of these accounts is not checked, yet later assumed to be vault_auth_pda a vault

can run into a DoS situation where nobody is able to deposit.

Recommendation

Verify that vault_auth_pda is the mint authority of those mint accounts.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 21

THE VAULT POOL AND TREASURY TOKEN ACCOUNTS DO NOT CHECK THE DELEGATE

Finding ID: FYEO-AMULET-ID-10

Severity: Low

Status: Remediated

Description

There is no check for a delegate authority for the vault_treasury_token_account and

vault_pool_token_account token accounts. The close_authority is not checked either.

Proof of Issue

File name: lib.rs

Line number: 157

#[account(

 constraint = *vault_admin_auth.key == vault_treasury_token_account.owner

@ErrorCode::ConstraintInvalidTAOwner,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_treasury_token_account: Account<'info, TokenAccount>,

#[account(

 constraint = *vault_auth_pda.key == vault_pool_token_account.owner

@ErrorCode::ConstraintInvalidTAOwner,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_pool_token_account: Account<'info, TokenAccount>,

Severity and Impact Summary

If a malicious admin adds a delegate to either token account, or does not properly check existing accounts, a

delegated authority might steal tokens from these accounts. The close_authority may also be set on these

accounts and should be checked as that allows closing of token accounts with zero balance or moving the

balance of native token accounts to another account.

Recommendation

Add a check to verify that there is no delegate and close authority set on these accounts.

References

https://github.com/solana-labs/solana-program-library/blob/master/token/program/src/state.rs#L86

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 22

UNCHECKED TOKEN ACCOUNT BALANCE FOR VAULT POOL

Finding ID: FYEO-AMULET-ID-11

Severity: Low

Status: Remediated

Description

In the create_vault_metadata_state function, there is no check to ensure that the token account

vault_pool_token_account has a zero balance. This may lead to unexpected behavior as the admin may

initialize the vault with token accounts that have already been used.

Proof of Issue

File name: lib.rs

Line number: 163

#[account(

 constraint = *vault_auth_pda.key == vault_pool_token_account.owner

@ErrorCode::ConstraintInvalidTAOwner,

 // owner = anchor_spl::token::ID @ErrorCode::OwnerTokenProgramID

)]

pub vault_pool_token_account: Account<'info, TokenAccount>,

Severity and Impact Summary

The admin may initialize the vault with a token account that has already been used, leading to unexpected

behavior and potential loss of funds.

Recommendation

Add constraints to check if the token account has a zero balance. Or make this account init and create it as a

PDA.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 23

DUPLICATE CODE EXECUTION IN ATTEMPTTOTRIGGER

Finding ID: FYEO-AMULET-ID-12

Severity: Informational

Status: Open

Description

In AttemptToTrigger the get_latest_trigger_status() function is run twice. Once from the constraint

macros and again in the process() function.

Proof of Issue

File name: lib.rs

Line number: 411

constraint =

vault_metadata_state.get_latest_trigger_status(sysvar_clock.unix_timestamp as u64,

&vault_token_mint, &vault_oracle_account).2 != VaultTriggeredResultNone as u64

@ErrorCode::ConstraintEmptyNewTriggeredResult,

File name: instructions/attempt_to_trigger.rs

Line number: 7

pub fn process(&mut self) -> Result<()> {

 let oracle_feed_account = &self.vault_oracle_account;

 let (raw_oracle_price, oracle_price, latest_status) =

self.vault_metadata_state.get_latest_trigger_status(self.sysvar_clock.unix_timestamp

as u64, &self.vault_token_mint, oracle_feed_account);

Severity and Impact Summary

There is no security impact, it is an optimization to simplify the code.

Recommendation

The process() function could return the same error in case the result is VaultTriggeredResultNone.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 24

IN THE CREATEVAULT INSTRUCTION THE VAULT ADMIN SHOULD CO-SIGN

Finding ID: FYEO-AMULET-ID-13

Severity: Informational

Status: Remediated

Description

The admin for this vault is not a co-signer of the instruction.

Proof of Issue

File name: lib.rs

Line number: 138

#[account(

 owner = system_program::ID @ErrorCode::OwnerSystemProgramID,

)]

/// CHECK: pass in admin auth account

pub vault_admin_auth: AccountInfo<'info>,

Severity and Impact Summary

It is possible to supply an account that nobody has the keys for making the use of admin functionality

impossible.

Recommendation

Consider making the vault_admin_auth account a Signer for this instruction.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 25

MATH INCONSISTENCY

Finding ID: FYEO-AMULET-ID-14

Severity: Informational

Status: Open

Description

Checked math is inconsistently used in the code base. The cargo setting overflow-checks=true is used

which would cause a panic in case of math overflows but most of the code explicitly uses checked math

anyway. There is however one exception.

Proof of Issue

File name: states/metadata_state.rs

Line number: 139

let oracle_price = (10.0_f64.powi(vault_token_mint.decimals as

i32).mul(raw_oracle_price)) as u64;

Severity and Impact Summary

This is not a security issue as the whole code base is covered against overflows using overflow-

checks=true. It is just a suggestion to improve maintainability and prevent any issues in the future should

the compiler flags be changed.

Recommendation

Consider using explicit checked math throughout the code base.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 26

THERE IS NO WAY TO CLEAN UP OLD ACCOUNTS

Finding ID: FYEO-AMULET-ID-15

Severity: Informational

Status: Open

Description

There is currently no way to cleanup old accounts. Solana accounts have a rent exemption fee that can be

refunded in case an account is closed. Since each vault has a number of accounts associated with it, those

could potentially be closed once the vault is settled and users have withdrawn all their funds. Mint accounts

can also be closed in the Token2022 standard which could be used for the LP mints. A compressed version of

the vault could also be used for archival purposes.

Proof of Issue

It is an absence of code.

Severity and Impact Summary

No security impact. This would only optimize storage and make it possible to regain smaller amounts from

rent exemption fees.

Recommendation

Consider adding such functionality.

References

https://spl.solana.com/token-2022/extensions#example-closing-a-mint

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 27

UNNECESSARY CONSTRAINTS

Finding ID: FYEO-AMULET-ID-16

Severity: Informational

Status: Open

Description

There are some unnecessary checks in the code that could be removed.

Proof of Issue

File name: lib.rs

Line number: various

constraint = staker_token_account.to_account_info().lamports() >=

sysvar_rent.minimum_balance(spl_token::state::Account::LEN)

@ErrorCode::ConstraintMinTokenAccountRent,

The check is redundant since the token accounts are already required to be rent-exempt. This check is done in

DepositRiskFund, DepositHedgeFund, WithdrawRiskFund, and WithdrawHedgeFund.

File name: lib.rs

Line number: various

#[account(

 address = sysvar::clock::ID @ErrorCode::AddressInvalidSysvarClock

)]

pub sysvar_clock: Sysvar<'info, Clock>,

#[account(

 address = system_program::ID @ErrorCode::AddressInvalidSPID

)]

pub system_program: Program<'info, System>,

#[account(

 address = anchor_spl::token::ID @ErrorCode::AddressInvalidTPID

)]

pub token_program: Program<'info, Token>,

#[account(

 address = sysvar::rent::ID @ErrorCode::AddressInvalidSysvarRent

)]

pub sysvar_rent: Sysvar<'info, Rent>,

Anchor does check the addresses of specific account types, such as System, Clock, Token and Rent.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 28

Severity and Impact Summary

No security impact. This would be a code optimization which could increase the readability.

Recommendation

Remove duplicate constraints from the affected functions.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 29

WITHDRAW FUNCTIONS DO NOT CHECK TOKEN AMOUNT AGAINST WITHDRAW AMOUNT

Finding ID: FYEO-AMULET-ID-17

Severity: Informational

Status: Open

Description

The WithdrawRiskFund and WithdrawHedgeFund functions check that lp_token_account.amount > 0.

The amount of tokens the user is attempting to withdraw is known as lp_amount. The check could instead

make sure that the token account contains at least lp_amount worth of tokens.

Proof of Issue

File name: lib.rs

Line number: 533

constraint = staker_lp_token_account.amount > 0 @ErrorCode::ConstraintNonZeroLPAmount,

File name: lib.rs

Line number: 613

constraint = hedger_lp_token_account.amount > 0 @ErrorCode::ConstraintNonZeroLPAmount,

The amount of tokens to be withdrawn is known:

#[instruction(lp_amount: u64)]

Severity and Impact Summary

No security impact. Token transfers would not work without the user having the required amount of tokens.

Any amount check here is purely for custom errors.

Recommendation

Consider checking against the actual withdraw amount.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 30

RELATIONSHIP GRAPHS

A relationship graph shows relational requirements to the input of an instruction. Notice, that it does not show

outcome of the instruction.

Relationship graphs are used to analyze insufficient authorization and unchecked account relations. Insufficient

authorization allows unintended access. Unchecked account relations may allow account and data injection

resulting in unintended behavior and access.

Various styles are used to highlight special properties. Accounts are shown as boxes with round corners. An

account box may contain smaller boxes indicating relevant account data.

The following table shows the basic styles for the relationship graphs.

Round boxes with thick blue borders indicate accounts required to

sign the transaction.

Green round boxes highlight accounts required to be owned by the

program itself.

Red round boxes indicate accounts where ownership is not validated.

Further analysis should be made to ensure this does not allow account

injection attacks.

Orange boxes indicate instruction data. As instruction data does not

originate from the blockchain, it may open for data injection attacks.

Caution must be taken if used for account validation.

Green boxes indicate constants. It may refer to either hardcoded

values or library code.

Inner boxes are used to indicate data structures to ease readability.

Additional colors may also be used to highlight account ownership

from different programs.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 31

Dashed lines indicate implicitly required relations. For example,

relations required by another program during a cross program

invocation. This is emphasized as the program cannot guarantee the

behavior of external programs.

Program derived addresses are calculated using the

find_program_address or create_program_address

functions. To illustrate the relations to the input used for the PDA

calculation, a diamond shaped box is used to show the PDA and a

double-edged box to gather the seeds.

As seed injection may lead to account injection, it is important that all

input to the PDA is verified.

Table 3: Legend for relationship graphs

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 32

CreateVaultMetadataState

Figure 2: CreateVaultMetadataState graph

There are no checks for the vaule_oracle_account which could lead to DoS situations when the vault tries

to settle. Neither the vault_treasury_token_account nor vault_pool_token_account are checked for a

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 33

delegate or close authority which could enable someone to transfer funds from these accounts. The

vault_admin_auth account is not a signer even though this account serves as an admin. The two mint

accounts could be the same account as neither key is checked. Also the LP mint accounts do not check who the

mint authority is which is later assumed to be vault_auth_pda but this might lead to a situation where

nobody can deposit as no LP tokens can be minted. Neither the vault_treasury_token_account nor

vault_pool_token_account mints are checked which could lead to user funds being stuck as attempting to

pay the fee to the treasury will not work.

AdminUpdateAdminAuthInfo

Figure 3: AdminUpdateAdminAuthInfo graph

The new_vault_admin_auth is not a signer of the transaction.

AdminUpdatePauseInfo

Figure 4: AdminUpdatePauseInfo graph

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 34

Allows pausing the vault at any stage.

DepositRiskFund

Figure 5: DepositRiskFund graph

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 35

Allows depositing tokens into a non paused vault during the funding period in return for LP tokens.

DepositHedgeFund

Figure 6: DepositRiskFund graph

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 36

Allows depositing tokens into a non paused vault during the funding period in return for LP tokens.

AttemptToTrigger

Figure 7: AttemptToTrigger graph

An un-permissioned function to trigger a non-paused vault in the locked period. No previous trigger result

must be set.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 37

SettleVault

Figure 8: SettleVault graph

Settle a non paused vault provided conditions are met.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 38

WithdrawRiskFund

Figure 9: WithdrawRiskFund graph

If the vault isn’t paused and withdrawal is allowed, burns LP tokens from the user in exchange for underlying

vault tokens.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 39

WithdrawHedgeFund

Figure 10: WithdrawHedgeFund graph

If the vault isn’t paused and withdrawal is allowed, burns LP tokens from the user in exchange for underlying

vault tokens.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 40

OUR PROCESS

METHODOLOGY

FYEO Inc. uses the following high-level methodology when approaching engagements. They are broken up

into the following phases.

Figure 11: Methodology Flow

KICKOFF

The project is kicked off as the sales process has concluded. We typically set up a kickoff meeting where

project stakeholders are gathered to discuss the project as well as the responsibilities of participants. During

this meeting we verify the scope of the engagement and discuss the project activities. It’s an opportunity for

both sides to ask questions and get to know each other. By the end of the kickoff there is an understanding of

the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

RAMP-UP

Ramp-up consists of the activities necessary to gain proficiency on the project. This can include the steps

needed for familiarity with the codebase or technological innovation utilized. This may include, but is not

limited to:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for specific languages

• Researching common flaws and recent technological advancements

REVIEW

The review phase is where most of the work on the engagement is completed. This is the phase where we

analyze the project for flaws and issues that impact the security posture. Depending on the project this may

Kickoff Ramp-up Review Report Verify

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 41

include an analysis of the architecture, a review of the code, and a specification matching to match the

architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the experience of the reviewer.

No dynamic testing was performed, only the use of custom-built scripts and tools were used to assist the

reviewer during the testing. We discuss our methodology in more detail in the following sections.

CODE SAFETY

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This list is general and not comprehensive, meant only to give an understanding of the issues we are looking

for.

TECHNICAL SPECIFICATION MATCHING

We analyzed the provided documentation and checked that the code matches the specification. We checked

for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

REPORTING

FYEO Inc. delivers a draft report that contains an executive summary, technical details, and observations

about the project.

The executive summary contains an overview of the engagement including the number of findings as well as a

statement about our general risk assessment of the project. We may conclude that the overall risk is low but

depending on what was assessed we may conclude that more scrutiny of the project is needed.

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 42

We report security issues identified, as well as informational findings for improvement, categorized by the

following labels:

• Critical

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity ranking and

recommendations for mitigation.

As we perform the audit, we may identify issues that aren’t security related, but are general best practices and

steps that can be taken to lower the attack surface of the project. We will call those out as we encounter them

and as time permits.

As an optional step, we can agree on the creation of a public report that can be shared and distributed with a

larger audience.

VERIFY

After the preliminary findings have been delivered, this could be in the form of the approved communication

channel or delivery of the draft report, we will verify any fixes within a window of time specified in the

project. After the fixes have been verified, we will change the status of the finding in the report from open to

remediated.

The output of this phase will be a final report with any mitigated findings noted.

ADDITIONAL NOTE

It is important to note that, although we did our best in our analysis, no code audit or assessment is a

guarantee of the absence of flaws. Our effort was constrained by resource and time limits along with the scope

of the agreement.

While assessing the severity of the findings, we considered the impact, ease of exploitability, and the

probability of attack. This is a solid baseline for severity determination.

THE CLASSIFICATION OF VULNERABILITIES

Security vulnerabilities and areas for improvement are weighted into one of several categories using, but is

not limited to, the criteria listed below:

Critical – vulnerability will lead to a loss of protected assets

• This is a vulnerability that would lead to immediate loss of protected assets

MTR Labs Pte Ltd. | Secure Code Review of Amulet Protocol v1.0

04 July 2023

 43

• The complexity to exploit is low

• The probability of exploit is high

High - vulnerability has potential to lead to a loss of protected assets

• All discrepancies found where there is a security claim made in the documentation that cannot be

found in the code

• All mismatches from the stated and actual functionality

• Unprotected key material

• Weak encryption of keys

• Badly generated key materials

• Txn signatures not verified

• Spending of funds through logic errors

• Calculation errors overflows and underflows

Medium - vulnerability hampers the uptime of the system or can lead to other problems

• Insecure calls to third party libraries

• Use of untested or nonstandard or non-peer-reviewed crypto functions

• Program crashes, leaves core dumps or writes sensitive data to log files

Low – vulnerability has a security impact but does not directly affect the protected assets

• Overly complex functions

• Unchecked return values from 3rd party libraries that could alter the execution flow

Informational

• General recommendations

